

Retrocommissioning for Energy Efficiency

Prepared For:

Prepared By:

AGENDA

Retrocommissioning (RCx) Defined

RCx Benefits

LEED Buildings – Good Candidates?

RCx Opportunity Indicators

Typical RCx Measures

Case Study – Lab & Office Scheduling & Setpoint Resets

Case Study - RCx & Retrofit Whole Building M&V

RCx Barriers & Solutions

Typical RCx/Partnership Program Services

RETROCOMMISSIONING (RCX)

ret·ro·com·mis·sion·ing1

A systematic method for investigating how and why an existing building's systems are operated and maintained, and identifying ways to improve overall building performance

¹Haasl, T Heinemeier, K 2006, "California Commissioning Guide: Existing Buildings" Prepared b Portland Energy Conservation, Inc. for California Commissioning Collaborative

RETROCOMMISSIONING FOR ENERGY EFFICIENCY: TYPICAL RESULTS BY BUILDING TYPE

Results by Building Type (Existing)

	Pre-Cx EUI (kBTU/ft²-year)	Source Energy Savings (%)	Simple Payback Time (PBT - years)	Number of buildings (by PBT)
17.40				
K-12			3.3	19
Higher education	250	11%	1.5	165
Food Sales	510	12%	0.3	10
Food Service				
Inpatient	532	15%	0.6	15
Outpatient	764	10%	0.1	13
Cleanrooms				
Data Center				
Laboratory	600	14%	0.5	50
Lodging	48	12%	1.5	38
Retail			1.4	9
Service				
Office	141	22%	1.1	145
Public Assembly			1.0	6
Public Order and Safety	229	16%	3.2	15

Values only shown when the sample size is five or more buildings.

Mills, E, 2009, "Building Commissioning A Golden Opportunity for Reducing Energy Costs and Greenhouse Gas Emissions" Prepared by Lawrence Berkeley National Laboratory for California Energy Commission Public Interest Energy Research (PIER) 59pp (Table 5)

enovity © 2012

MEASURED VS. PROPOSED SAVINGS FOR LEED® BUILDINGS

Predicted and Measured Energy Use may not correlate!

Why?

- Overly optimistic energy models
- Changes in building use (longer hours of operation, increased occupant density, etc.)
- Unresolved deficiencies from construction
- Inadequate Cx
- Operator overrides and inadequate training & resources

RCX OPPORTUNITY INDICATORS

Retrocommissioning Opportunity Indicators¹

- Presence of systems that simultaneously heat and cool, such as constant and variable air volume reheat
- **Presence of economizers**
- Pumps with throttled discharge valves
- Equipment or lighting that is on when the space is unoccupied
- Improper building pressurization (either negative or positive); i.e., doors that won't close or are difficult to open
- Equipment or piping that is hot or cold when it shouldn't be; unusual flow noises at valves or mechanical noises
- Short cycling of equipment
- Variable frequency drives appear to be operating at or close to 100% most of the time
- High Energy Costs!

Haasl, T Heinemeier , K 2006, "California Commissioning Guide: Existing Buil Portland Energy Conservation, Inc. for California Commissioning Collaborativ

TYPICAL RCX MEASURES

HVAC Airside

Reduce supply fan operating schedule

Adjust airside economizers

Adjust zone temperature dead-band

Add supply air temperature setpoint reset strategy

Reduce supply duct static pressure setpoint

Add supply duct static pressure setpoint reset strategy

Add / restore fan VFD

HVAC Waterside

Add / optimize boiler lockout

Add chilled water supply temperature setpoint reset strategy

Add condenser water supply temperature setpoint reset strategy

Add / restore pump VFD

Lighting

Reduce lighting operating schedule

Install lighting occupancy sensors

CONTACT ENOVITY

JEFF GUILD

Director, Energy Services 415-983-3655

<u>JGuild@enovity.com</u> www.persistencecommissioning.com

100 Montgomery Street, Suite 600, San Francisco, CA 94104 Phone: 415.974.0390 Fax: 415.974.0399

San Francisco • Sacramento • Los Angeles • Irvine • San Diego • Phoenix • Seattle